Copied to
clipboard

G = C42.309C23order 128 = 27

170th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.309C23, C4.1292- 1+4, C4.1822+ 1+4, (C8xD4):53C2, (C8xQ8):38C2, C8:6D4:48C2, C8:9D4:50C2, C8:4Q8:48C2, C4.42(C8oD4), C4:D4.32C4, C22:Q8.32C4, C4:C8.373C22, (C2xC4).691C24, C42.239(C2xC4), C42:2C2.6C4, (C2xC8).449C23, (C4xC8).348C22, C4.4D4.25C4, C22.8(C8oD4), C42.C2.25C4, (C4xD4).307C22, C23.48(C22xC4), (C22xC8).96C22, (C4xQ8).288C22, C8:C4.108C22, C42.12C4:60C2, C22:C8.242C22, (C22xC4).951C23, C22.213(C23xC4), (C2xC42).798C22, C22.D4.13C4, C42:C2.93C22, C42.7C22:31C2, C42.6C22:34C2, (C2xM4(2)).254C22, C23.36C23.18C2, C2.49(C23.33C23), (C2xC4:C8):53C2, C2.39(C2xC8oD4), C4:C4.172(C2xC4), (C2xD4).186(C2xC4), C22:C4.46(C2xC4), (C2xC4).89(C22xC4), (C2xQ8).169(C2xC4), (C22xC4).369(C2xC4), SmallGroup(128,1726)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.309C23
C1C2C4C2xC4C42C2xC42C23.36C23 — C42.309C23
C1C22 — C42.309C23
C1C2xC4 — C42.309C23
C1C2C2C2xC4 — C42.309C23

Generators and relations for C42.309C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, ac=ca, dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, cd=dc, ece=a2b2c, ede=a2d >

Subgroups: 252 in 182 conjugacy classes, 128 normal (52 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4xC8, C4xC8, C8:C4, C22:C8, C22:C8, C4:C8, C4:C8, C2xC42, C42:C2, C4xD4, C4xD4, C4xQ8, C4:D4, C22:Q8, C22.D4, C4.4D4, C42.C2, C42:2C2, C22xC8, C2xM4(2), C2xC4:C8, C42.6C22, C42.12C4, C42.7C22, C8xD4, C8xD4, C8:9D4, C8:6D4, C8xQ8, C8:4Q8, C23.36C23, C42.309C23
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C24, C8oD4, C23xC4, 2+ 1+4, 2- 1+4, C23.33C23, C2xC8oD4, C42.309C23

Smallest permutation representation of C42.309C23
On 64 points
Generators in S64
(1 47 51 59)(2 48 52 60)(3 41 53 61)(4 42 54 62)(5 43 55 63)(6 44 56 64)(7 45 49 57)(8 46 50 58)(9 26 34 22)(10 27 35 23)(11 28 36 24)(12 29 37 17)(13 30 38 18)(14 31 39 19)(15 32 40 20)(16 25 33 21)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)(25 37)(26 38)(27 39)(28 40)(29 33)(30 34)(31 35)(32 36)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 14)(2 36)(3 16)(4 38)(5 10)(6 40)(7 12)(8 34)(9 50)(11 52)(13 54)(15 56)(17 61)(18 46)(19 63)(20 48)(21 57)(22 42)(23 59)(24 44)(25 45)(26 62)(27 47)(28 64)(29 41)(30 58)(31 43)(32 60)(33 53)(35 55)(37 49)(39 51)

G:=sub<Sym(64)| (1,47,51,59)(2,48,52,60)(3,41,53,61)(4,42,54,62)(5,43,55,63)(6,44,56,64)(7,45,49,57)(8,46,50,58)(9,26,34,22)(10,27,35,23)(11,28,36,24)(12,29,37,17)(13,30,38,18)(14,31,39,19)(15,32,40,20)(16,25,33,21), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,14)(2,36)(3,16)(4,38)(5,10)(6,40)(7,12)(8,34)(9,50)(11,52)(13,54)(15,56)(17,61)(18,46)(19,63)(20,48)(21,57)(22,42)(23,59)(24,44)(25,45)(26,62)(27,47)(28,64)(29,41)(30,58)(31,43)(32,60)(33,53)(35,55)(37,49)(39,51)>;

G:=Group( (1,47,51,59)(2,48,52,60)(3,41,53,61)(4,42,54,62)(5,43,55,63)(6,44,56,64)(7,45,49,57)(8,46,50,58)(9,26,34,22)(10,27,35,23)(11,28,36,24)(12,29,37,17)(13,30,38,18)(14,31,39,19)(15,32,40,20)(16,25,33,21), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,14)(2,36)(3,16)(4,38)(5,10)(6,40)(7,12)(8,34)(9,50)(11,52)(13,54)(15,56)(17,61)(18,46)(19,63)(20,48)(21,57)(22,42)(23,59)(24,44)(25,45)(26,62)(27,47)(28,64)(29,41)(30,58)(31,43)(32,60)(33,53)(35,55)(37,49)(39,51) );

G=PermutationGroup([[(1,47,51,59),(2,48,52,60),(3,41,53,61),(4,42,54,62),(5,43,55,63),(6,44,56,64),(7,45,49,57),(8,46,50,58),(9,26,34,22),(10,27,35,23),(11,28,36,24),(12,29,37,17),(13,30,38,18),(14,31,39,19),(15,32,40,20),(16,25,33,21)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17),(25,37),(26,38),(27,39),(28,40),(29,33),(30,34),(31,35),(32,36),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,14),(2,36),(3,16),(4,38),(5,10),(6,40),(7,12),(8,34),(9,50),(11,52),(13,54),(15,56),(17,61),(18,46),(19,63),(20,48),(21,57),(22,42),(23,59),(24,44),(25,45),(26,62),(27,47),(28,64),(29,41),(30,58),(31,43),(32,60),(33,53),(35,55),(37,49),(39,51)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4J4K···4R8A···8P8Q···8X
order1222222244444···44···48···88···8
size1111224411112···24···42···24···4

50 irreducible representations

dim111111111111111112244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C4C4C4C4C4C4C8oD4C8oD42+ 1+42- 1+4
kernelC42.309C23C2xC4:C8C42.6C22C42.12C4C42.7C22C8xD4C8:9D4C8:6D4C8xQ8C8:4Q8C23.36C23C4:D4C22:Q8C22.D4C4.4D4C42.C2C42:2C2C4C22C4C4
# reps112123211112242248811

Matrix representation of C42.309C23 in GL4(F17) generated by

11500
11600
00160
0001
,
4000
0400
00130
00013
,
15000
01500
0080
0009
,
11500
01600
00160
00016
,
16000
16100
00016
00160
G:=sub<GL(4,GF(17))| [1,1,0,0,15,16,0,0,0,0,16,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,13,0,0,0,0,13],[15,0,0,0,0,15,0,0,0,0,8,0,0,0,0,9],[1,0,0,0,15,16,0,0,0,0,16,0,0,0,0,16],[16,16,0,0,0,1,0,0,0,0,0,16,0,0,16,0] >;

C42.309C23 in GAP, Magma, Sage, TeX

C_4^2._{309}C_2^3
% in TeX

G:=Group("C4^2.309C2^3");
// GroupNames label

G:=SmallGroup(128,1726);
// by ID

G=gap.SmallGroup(128,1726);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,891,675,1018,80,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,a*c=c*a,d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^2*b^2*c,e*d*e=a^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<